A certain algebraic construction of quasicrystals and their isomorphism classes

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys. A: Math. Gen. 338483
(http://iopscience.iop.org/0305-4470/33/47/311)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.123
The article was downloaded on 02/06/2010 at 08:36

Please note that terms and conditions apply.

A certain algebraic construction of quasicrystals and their isomorphism classes

Tatsuya Kimijima and Jun Morita
Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

Received 21 February 2000, in final form 9 May 2000

Abstract. Certain quasicrystals will be realized in cyclotomic fields, and their isomorphism structures will be given in the case of seven-fold or 30 -fold symmetry.

Let n be a natural number greater than 2 , and $\varphi(n)$ the Euler function. Then $\varphi(n)$ is even, and we write $\varphi(n)=2 m$. We take a primitive nth root of unity, say $\zeta=\mathrm{e}^{2 \pi \sqrt{-1} / n}$, and a cyclotomic field $\mathbb{F}=\mathbb{Q}(\zeta)$. Put $\mathbb{E}=\mathbb{R} \cap \mathbb{F}=\mathbb{Q}(\eta)$, where $\eta=\zeta+\zeta^{-1}=2 \cos (2 \pi / n)$. Then, we obtain the following exact sequence:

$$
1 \longrightarrow\left\langle^{-}\right\rangle \longrightarrow \operatorname{Gal}(\mathbb{F} / \mathbb{Q}) \longrightarrow \operatorname{Gal}(\mathbb{E} / \mathbb{Q}) \longrightarrow 1
$$

where ${ }^{-}$means the automorphism induced by the complex conjugation and Gal gives the Galois group (cf [8]). Then, modulo $\left\langle^{-}\right\rangle$, we can choose m elements $\delta_{0}=\mathrm{i} d, \ldots, \delta_{m-1} \in \operatorname{Gal}(\mathbb{F} / \mathbb{Q})$ whose images constitute the whole of $\operatorname{Gal}(\mathbb{E} / \mathbb{Q})$, and we fix them. Let $\mathfrak{O}_{\mathbb{F}}=\mathbb{Z}[\zeta]$, the ring of integers of \mathbb{F}, and $\mathfrak{O}_{\mathbb{E}}=\mathbb{Z}[\eta]$, the ring of integers of \mathbb{E}.

For a positive real number r and for each $i=1, \ldots, m-1$, we define a subset

$$
\Sigma_{i}^{r}=\left\{x \in \mathfrak{O}_{\mathbb{F}}| | \delta_{i}(x) \mid<r\right\}
$$

Then we define a quasicrystal system by $\left(\Sigma_{1}^{r_{1}}, \Sigma_{2}^{r_{2}}, \ldots, \Sigma_{m-1}^{r_{m-1}}\right)$ for any positive real numbers $r_{1}, r_{2}, \ldots, r_{m-1}$. For a quasicrystal system $\left(\Sigma_{1}^{r_{1}}, \Sigma_{2}^{r_{2}}, \ldots, \Sigma_{m-1}^{r_{m-1}}\right)$, we put, as a realization,

$$
\Sigma^{r_{1}, r_{2}, \ldots, r_{m-1}}=\bigcap_{i=1}^{m-1} \Sigma_{i}^{r_{i}}
$$

which is called a quasicrystal associated with $\mathfrak{O}_{\mathbb{F}}$ and $\left(r_{1}, r_{2}, \ldots, r_{m-1}\right)$. Here, to construct our quasicrystals, we selected a special window which is given by $m-1$ parameters r_{1}, \ldots, r_{m-1}. There are many other choices for windows in general (cf $[2,3,5,6]$). We say that $\Sigma^{r_{1}, r_{2}, \ldots, r_{m-1}}$ is isomorphic to $\Sigma^{s_{1}, s_{2}, \ldots, s_{m-1}}$ if there exists a \mathbb{Z}-linear map ϕ of $\mathfrak{O}_{\mathbb{F}}$ onto $\mathfrak{O}_{\mathbb{F}}$ satisfying

$$
\phi\left(\Sigma_{1}^{r_{1}}\right)=\Sigma_{1}^{s_{1}} \quad \phi\left(\Sigma_{2}^{r_{2}}\right)=\Sigma_{2}^{s_{2}}, \ldots, \phi\left(\Sigma_{m-1}^{r_{m-1}}\right)=\Sigma_{m-1}^{s_{m-1}} .
$$

Mathematically it is very interesting to study this subset of complex numbers. For $n=3,4,6$, the situation falls into the world of crystals. The most interesting situation is one of the cases when $n=5,8,10,12$, which implies $\varphi(n)=4$ and $m=2(\operatorname{cf}[1,4])$.

The next one may be the case when $n=7$, in which case $\varphi(7)=6$ and $m=3$. As an example for $\varphi(n)=8$ and $m=4$, we will choose $n=30$.

Figure 1. $r_{1}=0.8, r_{2}=52$.
(1) The case of $n=7$. In this case, $m=3$ and the number of parameters is two. Let $\varepsilon_{1}=\eta+1$ and $\varepsilon_{2}=\eta^{2}-1$. Then, the unit group $\mathfrak{O}_{\mathbb{E}}^{*}$ of $\mathfrak{O}_{\mathbb{E}}$ is

$$
\mathfrak{O}_{\mathbb{E}}^{*}=\left\{ \pm \varepsilon_{1}^{k_{1}} \varepsilon_{2}^{k_{2}} \mid k_{1}, k_{2} \in \mathbb{Z}\right\}
$$

We put $\mathfrak{O}_{\mathbb{E}}^{* *}=\left\{\varepsilon_{1}^{2 k_{1}} \varepsilon_{2}^{2 k_{2}} \mid k_{1}, k_{2} \in \mathbb{Z}\right\}$, and we choose $\delta_{1}, \delta_{2} \in \operatorname{Gal}(\mathbb{F} / \mathbb{Q})$ satisfying

$$
\begin{array}{ll}
\delta_{1}(\zeta)=\zeta^{2} & \delta_{2}(\zeta)=\zeta^{3} \\
\delta_{1}(\eta)=\eta^{2}-2 & \delta_{2}(\eta)=-\eta^{2}-\eta+1 \\
\delta_{1}\left(\varepsilon_{1}\right)=\varepsilon_{2} & \delta_{2}\left(\varepsilon_{1}\right)=-\varepsilon_{1}^{-1} \varepsilon_{2}^{-1} \\
\delta_{1}\left(\varepsilon_{2}\right)=-\varepsilon_{1}^{-1} \varepsilon_{2}^{-1} & \delta_{2}\left(\varepsilon_{2}\right)=\varepsilon_{1} .
\end{array}
$$

Then, using the same argument as in [7], we obtain the following proposition.
Proposition 1. Two quasicrystals $\Sigma^{r_{1}, r_{2}}$ and $\Sigma^{s_{1}, s_{2}}$ are isomorphic if and only if there is an element $\varepsilon \in \mathfrak{O}_{\mathbb{E}}^{* *}$ such that $\left(s_{i} / r_{i}\right)^{2}=\delta_{i}(\varepsilon)$ for $i=1$, 2. That is, two quasicrystals $\Sigma^{r_{1}, r_{2}}$ and $\Sigma^{s_{1}, s_{2}}$ are isomorphic if and only if the following two integral conditions hold:
$\left\{\log \left(s_{1} / r_{1}\right) \log \varepsilon_{1}+\log \left(s_{2} / r_{2}\right) \log \left(\varepsilon_{1} \varepsilon_{2}\right)\right\} /\left\{\left(\log \varepsilon_{1}\right)^{2}+\log \varepsilon_{1} \log \varepsilon_{2}+\left(\log \varepsilon_{2}\right)^{2}\right\} \in \mathbb{Z}$
$\left\{\log \left(s_{1} / r_{1}\right) \log \left(\varepsilon_{1} \varepsilon_{2}\right)+\log \left(s_{2} / r_{2}\right) \log \varepsilon_{2}\right\} /\left\{\left(\log \varepsilon_{1}\right)^{2}+\log \varepsilon_{1} \log \varepsilon_{2}+\left(\log \varepsilon_{2}\right)^{2}\right\} \in \mathbb{Z}$.
(2) The case of $n=30$. In this case, $m=4$ and the number of parameters is three. Let $\varepsilon_{1}=\eta, \varepsilon_{2}=\eta+1$ and $\varepsilon_{3}=\eta^{2}-3$. Then, the unit group $\mathfrak{O}_{\mathbb{E}}^{*}$ of $\mathfrak{O}_{\mathbb{E}}$ is

$$
\mathfrak{O}_{\mathbb{E}}^{*}=\left\{ \pm \varepsilon_{1}^{k_{1}} \varepsilon_{2}^{k_{2}} \varepsilon_{3}^{k_{3}} \mid k_{1}, k_{2}, k_{3} \in \mathbb{Z}\right\} .
$$

Figure 2. $r_{1}=5, r_{2}=12$.

We put $\mathfrak{O}_{\mathbb{E}}^{* *}=\left\{\varepsilon_{1}^{2 k_{1}} \varepsilon_{2}^{2 k_{2}} \varepsilon_{3}^{2 k_{3}}\left(\varepsilon_{1} \varepsilon_{2}\right)^{\ell} \mid k_{1}, k_{2}, k_{3}, \ell \in \mathbb{Z}\right\}$, and we choose $\delta_{1}, \delta_{2}, \delta_{3} \in \operatorname{Gal}(\mathbb{F} / \mathbb{Q})$ satisfying

$\delta_{1}(\zeta)=\zeta^{7}$	$\delta_{2}(\zeta)=\zeta^{11}$	$\delta_{3}(\zeta)=\zeta^{13}$
$\delta_{1}(\eta)=-\eta^{3}+\eta^{2}+3 \eta-2$	$\delta_{2}(\eta)=\eta^{3}-4 \eta-1$	$\delta_{3}(\eta)=-\eta^{2}+2$
$\delta_{1}\left(\varepsilon_{1}\right)=\varepsilon_{1}^{-1} \varepsilon_{2}^{-1} \varepsilon_{3}^{-1}$	$\delta_{2}\left(\varepsilon_{1}\right)=-\varepsilon_{1} \varepsilon_{3}^{2}$	$\delta_{3}\left(\varepsilon_{1}\right)=-\varepsilon_{1}^{-1} \varepsilon_{2} \varepsilon_{3}^{-1}$
$\delta_{1}\left(\varepsilon_{2}\right)=\varepsilon_{3}^{-1}$	$\delta_{2}\left(\varepsilon_{2}\right)=-\varepsilon_{2}^{-1}$	$\delta_{3}\left(\varepsilon_{2}\right)=-\varepsilon_{3}$
$\delta_{1}\left(\varepsilon_{3}\right)=-\varepsilon_{2}$	$\delta_{2}\left(\varepsilon_{3}\right)=-\varepsilon_{3}^{-1}$	$\delta_{3}\left(\varepsilon_{3}\right)=\varepsilon_{2}^{-1}$.

Then, using the same method as in [7], we obtain the following proposition.
Proposition 2. Two quasicrystals $\Sigma^{r_{1}, r_{2}, r_{3}}$ and $\Sigma^{s_{1}, s_{2}, s_{3}}$ are isomorphic if and only if there is an element $\varepsilon \in \mathfrak{O}_{\mathbb{E}}^{* *}$ such that $\left(s_{i} / r_{i}\right)^{2}=\delta_{i}(\varepsilon)$ for $i=1,2$, 3 . Equivalently, two quasicrystals $\Sigma^{r_{1}, r_{2}, r_{3}}$ and $\Sigma^{s_{1}, s_{2}, s_{3}}$ are isomorphic if and only if one of the following two cases occurs.

Case (a).

$$
\begin{aligned}
& \frac{1}{\Delta}\left|\begin{array}{ccc}
\log \left(s_{1} / r_{1}\right) & -\log \varepsilon_{3} & \log \varepsilon_{2} \\
\log \left(s_{2} / r_{2}\right) & -\log \varepsilon_{2} & -\log \varepsilon_{3} \\
\log \left(s_{3} / r_{3}\right) & \log \varepsilon_{3} & -\log \varepsilon_{2}
\end{array}\right| \in \mathbb{Z} \\
& \frac{1}{\Delta}\left|\begin{array}{ccc}
-\log \left(\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}\right) & \log \left(s_{1} / r_{1}\right) & \log \varepsilon_{2} \\
\log \left(\varepsilon_{1} \varepsilon_{3}^{2}\right) & \log \left(s_{2} / r_{2}\right) & -\log \varepsilon_{3} \\
\log \left(\varepsilon_{2} / \varepsilon_{1} \varepsilon_{3}\right) & \log \left(s_{3} / r_{3}\right) & -\log \varepsilon_{2}
\end{array}\right| \in \mathbb{Z}
\end{aligned}
$$

Figure 3. $r_{1}=3, r_{2}=16$.

$$
\frac{1}{\Delta}\left|\begin{array}{ccc}
-\log \left(\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}\right) & -\log \varepsilon_{3} & \log \left(s_{1} / r_{1}\right) \\
\log \left(\varepsilon_{1} \varepsilon_{3}^{2}\right) & -\log \varepsilon_{2} & \log \left(s_{2} / r_{2}\right) \\
\log \left(\varepsilon_{2} / \varepsilon_{1} \varepsilon_{3}\right) & \log \varepsilon_{3} & \log \left(s_{3} / r_{3}\right)
\end{array}\right| \in \mathbb{Z} .
$$

Case (b).

$$
\begin{aligned}
& \frac{1}{\Delta}\left|\begin{array}{ccc}
\log \left(s_{1} \varepsilon_{3}\left(\varepsilon_{1} \varepsilon_{2}\right)^{1 / 2} / r_{1}\right) & -\log \varepsilon_{3} & \log \varepsilon_{2} \\
\log \left(s_{2} \varepsilon_{2}^{1 / 2} / r_{2} \varepsilon_{3} \varepsilon_{1}^{1 / 2}\right) & -\log \varepsilon_{2} & -\log \varepsilon_{3} \\
\log \left(s_{3} \varepsilon_{1}^{1 / 2} / r_{3} \varepsilon_{2}^{1 / 2}\right) & \log \varepsilon_{3} & -\log \varepsilon_{2}
\end{array}\right| \in \mathbb{Z} \\
& \frac{1}{\Delta}\left|\begin{array}{ccc}
-\log \left(\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}\right) & \log \left(s_{1} \varepsilon_{3}\left(\varepsilon_{1} \varepsilon_{2}\right)^{1 / 2} / r_{1}\right) & \log \varepsilon_{2} \\
\log \left(\varepsilon_{1} \varepsilon_{3}^{2}\right) & \log \left(s_{2} \varepsilon_{2}^{1 / 2} / r_{2} \varepsilon_{3} \varepsilon_{1}^{1 / 2}\right) & -\log \varepsilon_{3} \\
\log \left(\varepsilon_{2} / \varepsilon_{1} \varepsilon_{3}\right) & \log \left(s_{3} \varepsilon_{1}^{1 / 2} / r_{3} \varepsilon_{2}^{1 / 2}\right) & -\log \varepsilon_{2}
\end{array}\right| \in \mathbb{Z} \\
& \frac{1}{\Delta}\left|\begin{array}{ccc}
-\log \left(\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}\right) & -\log \varepsilon_{3} & \log \left(s_{1} \varepsilon_{3}\left(\varepsilon_{1} \varepsilon_{2}\right)^{1 / 2} / r_{1}\right) \\
\log \left(\varepsilon_{1} \varepsilon_{3}^{2}\right) & -\log \varepsilon_{2} & \log \left(s_{2} \varepsilon_{2}^{1 / 2} / r_{2} \varepsilon_{3} \varepsilon_{1}^{1 / 2}\right) \\
\log \left(\varepsilon_{2} / \varepsilon_{1} \varepsilon_{3}\right) & \log \varepsilon_{3} & \log \left(s_{3} \varepsilon_{1}^{1 / 2} / r_{3} \varepsilon_{2}^{1 / 2}\right)
\end{array}\right| \in \mathbb{Z}
\end{aligned}
$$

where $\Delta=2 \log \left(\varepsilon_{1} \varepsilon_{3}\right)\left\{\left(\log \varepsilon_{2}\right)^{2}+\left(\log \varepsilon_{3}\right)^{2}\right\}$.
Here, || means the determinant of a matrix. In general, it is possible to try to compute a similar calculation as above for any n, which might be rather complicated sometimes. Figures 1, 2 and 3 are examples for proposition 1 .

References

[1] Baake M, Joseph D, Kramer P and Schlottmann M 1990 Root lattices and quasicrystals J. Phys. A: Math. Gen. 23 L1037-41
[2] Barache D, Champagne B and Gazeau J-P 1998 Pisot-cyclotomic quasilattices and their symmetry semigroups Quasicrystals and Discrete Geometry (Fields Institute Monographs 10) ed J Patera (Providence, RI: American Mathematical Society) pp 15-66
[3] de Bruijn N G 1981 Algebraic theory of Penrose's non-periodic tilings of the plane I Proc. Konin. Ned. Akad. Weten. Ser. (Indag. Math. 43) A 84 39-52
de Bruijn N G 1981 Algebraic theory of Penrose's non-periodic tilings of the plane II Proc. Konin. Ned. Akad. Weten. Ser. (Indag. Math. 43) A 84 53-66
[4] Janot C 1994 Quasicrystals-A Primer 2nd edn (Oxford: Oxford Science)
[5] Levine D and Steinhardt P J 1984 A new class of ordered structures Phys. Rev. Lett. 53 2477-80
[6] Levine D and Steinhardt P J 1986 Quasicrystals I: definition and structure Phys. Rev. B 34 596-616
[7] Moody R V and Patera J 1993 Quasicrystals and icosians J. Phys. A: Math. Gen. 26 2829-53
[8] Washington L C 1997 Introduction to Cyclotomic Fields (Graduate Texts in Mathematics 83) 2nd edn (New York: Springer)

