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Abstract. Certain quasicrystals will be realized in cyclotomic fields, and their isomorphism
structures will be given in the case of seven-fold or 30-fold symmetry.

Let n be a natural number greater than 2, and ϕ(n) the Euler function. Then ϕ(n) is even,
and we write ϕ(n) = 2m. We take a primitive nth root of unity, say ζ = e2π

√−1/n, and a
cyclotomic field F = Q(ζ ). Put E = R ∩ F = Q(η), where η = ζ + ζ−1 = 2 cos(2π/n).
Then, we obtain the following exact sequence:

1 −→ 〈 ¯ 〉 −→ Gal(F/Q) −→ Gal(E/Q) −→ 1

where ¯means the automorphism induced by the complex conjugation and Gal gives the Galois
group (cf [8]). Then, modulo 〈 ¯ 〉, we can choose m elements δ0 = id, . . . , δm−1 ∈ Gal(F/Q)

whose images constitute the whole of Gal(E/Q), and we fix them. Let OF = Z[ζ ], the ring
of integers of F, and OE = Z[η], the ring of integers of E.

For a positive real number r and for each i = 1, . . . , m − 1, we define a subset

�r
i = { x ∈ OF | |δi(x)| < r }.

Then we define a quasicrystal system by (�
r1
1 , �

r2
2 , . . . , �

rm−1

m−1) for any positive real numbers
r1, r2, . . . , rm−1. For a quasicrystal system (�

r1
1 , �

r2
2 , . . . , �

rm−1

m−1), we put, as a realization,

�r1,r2,...,rm−1 =
m−1⋂

i=1

�
ri

i

which is called a quasicrystal associated with OF and (r1, r2, . . . , rm−1). Here, to construct our
quasicrystals, we selected a special window which is given by m− 1 parameters r1, . . . , rm−1.
There are many other choices for windows in general (cf [2, 3, 5, 6]). We say that �r1,r2,...,rm−1

is isomorphic to �s1,s2,...,sm−1 if there exists a Z-linear map φ of OF onto OF satisfying

φ(�
r1
1 ) = �

s1
1 φ(�

r2
2 ) = �

s2
2 , . . . , φ(�

rm−1

m−1) = �
sm−1

m−1.

Mathematically it is very interesting to study this subset of complex numbers. For n = 3, 4, 6,
the situation falls into the world of crystals. The most interesting situation is one of the cases
when n = 5, 8, 10, 12, which implies ϕ(n) = 4 and m = 2 (cf [1, 4]).

The next one may be the case when n = 7, in which case ϕ(7) = 6 and m = 3. As an
example for ϕ(n) = 8 and m = 4, we will choose n = 30.
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Figure 1. r1 = 0.8, r2 = 52.

(1) The case of n = 7. In this case, m = 3 and the number of parameters is two. Let
ε1 = η + 1 and ε2 = η2 − 1. Then, the unit group O∗

E
of OE is

O∗
E

= { ±ε
k1
1 ε

k2
2 | k1, k2 ∈ Z }.

We put O∗∗
E

= { ε
2k1
1 ε

2k2
2 | k1, k2 ∈ Z }, and we choose δ1, δ2 ∈ Gal(F/Q) satisfying

δ1(ζ ) = ζ 2 δ2(ζ ) = ζ 3

δ1(η) = η2 − 2 δ2(η) = −η2 − η + 1

δ1(ε1) = ε2 δ2(ε1) = −ε−1
1 ε−1

2

δ1(ε2) = −ε−1
1 ε−1

2 δ2(ε2) = ε1.

Then, using the same argument as in [7], we obtain the following proposition.

Proposition 1. Two quasicrystals �r1,r2 and �s1,s2 are isomorphic if and only if there is an
element ε ∈ O∗∗

E
such that (si/ri)

2 = δi(ε) for i = 1, 2. That is, two quasicrystals �r1,r2 and
�s1,s2 are isomorphic if and only if the following two integral conditions hold:

{log(s1/r1) log ε1 + log(s2/r2) log(ε1ε2)}/{(log ε1)
2 + log ε1 log ε2 + (log ε2)

2} ∈ Z

{log(s1/r1) log(ε1ε2) + log(s2/r2) log ε2}/{(log ε1)
2 + log ε1 log ε2 + (log ε2)

2} ∈ Z.

(2) The case of n = 30. In this case, m = 4 and the number of parameters is three. Let
ε1 = η, ε2 = η + 1 and ε3 = η2 − 3. Then, the unit group O∗

E
of OE is

O∗
E

= {±ε
k1
1 ε

k2
2 ε

k3
3 | k1, k2, k3 ∈ Z}.
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Figure 2. r1 = 5, r2 = 12.

We put O∗∗
E

= {ε2k1
1 ε

2k2
2 ε

2k3
3 (ε1ε2)

� | k1, k2, k3, � ∈ Z}, and we choose δ1, δ2, δ3 ∈ Gal(F/Q)

satisfying

δ1(ζ ) = ζ 7 δ2(ζ ) = ζ 11 δ3(ζ ) = ζ 13

δ1(η) = −η3 + η2 + 3η − 2 δ2(η) = η3 − 4η − 1 δ3(η) = −η2 + 2

δ1(ε1) = ε−1
1 ε−1

2 ε−1
3 δ2(ε1) = −ε1ε

2
3 δ3(ε1) = −ε−1

1 ε2ε
−1
3

δ1(ε2) = ε−1
3 δ2(ε2) = −ε−1

2 δ3(ε2) = −ε3

δ1(ε3) = −ε2 δ2(ε3) = −ε−1
3 δ3(ε3) = ε−1

2 .

Then, using the same method as in [7], we obtain the following proposition.

Proposition 2. Two quasicrystals �r1,r2,r3 and �s1,s2,s3 are isomorphic if and only if there is
an element ε ∈ O∗∗

E
such that (si/ri)

2 = δi(ε) for i = 1, 2, 3. Equivalently, two quasicrystals
�r1,r2,r3 and �s1,s2,s3 are isomorphic if and only if one of the following two cases occurs.

Case (a).

1

�

∣∣∣∣∣

log(s1/r1) − log ε3 log ε2

log(s2/r2) − log ε2 − log ε3

log(s3/r3) log ε3 − log ε2

∣∣∣∣∣ ∈ Z

1

�

∣∣∣∣∣

− log(ε1ε2ε3) log(s1/r1) log ε2

log(ε1ε
2
3) log(s2/r2) − log ε3

log(ε2/ε1ε3) log(s3/r3) − log ε2

∣∣∣∣∣ ∈ Z
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Figure 3. r1 = 3, r2 = 16.

1

�

∣∣∣∣∣

− log(ε1ε2ε3) − log ε3 log(s1/r1)

log(ε1ε
2
3) − log ε2 log(s2/r2)

log(ε2/ε1ε3) log ε3 log(s3/r3)

∣∣∣∣∣ ∈ Z.

Case (b).

1

�

∣∣∣∣∣∣

log(s1ε3(ε1ε2)
1/2/r1) − log ε3 log ε2

log(s2ε
1/2
2 /r2ε3ε

1/2
1 ) − log ε2 − log ε3

log(s3ε
1/2
1 /r3ε

1/2
2 ) log ε3 − log ε2

∣∣∣∣∣∣
∈ Z

1

�

∣∣∣∣∣∣

− log(ε1ε2ε3) log(s1ε3(ε1ε2)
1/2/r1) log ε2

log(ε1ε
2
3) log(s2ε

1/2
2 /r2ε3ε

1/2
1 ) − log ε3

log(ε2/ε1ε3) log(s3ε
1/2
1 /r3ε

1/2
2 ) − log ε2

∣∣∣∣∣∣
∈ Z

1

�

∣∣∣∣∣∣

− log(ε1ε2ε3) − log ε3 log(s1ε3(ε1ε2)
1/2/r1)

log(ε1ε
2
3) − log ε2 log(s2ε

1/2
2 /r2ε3ε

1/2
1 )

log(ε2/ε1ε3) log ε3 log(s3ε
1/2
1 /r3ε

1/2
2 )

∣∣∣∣∣∣
∈ Z

where � = 2 log(ε1ε3){(log ε2)
2 + (log ε3)

2}.
Here, | | means the determinant of a matrix. In general, it is possible to try to compute a

similar calculation as above for anyn, which might be rather complicated sometimes. Figures 1,
2 and 3 are examples for proposition 1.
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